TY - JOUR
T1 - Total and Monomethyl Mercury in Fog Water from the Central California Coast
AU - Weiss-Penzias, Peter S.
AU - Ortiz, Cruz
AU - Acosta, R. Paul
AU - Heim, Wesley
AU - Ryan, John P.
AU - Fernandez, Daniel
AU - Collett, Jeffrey L.
AU - Flegal, A. Russell
PY - 2012/1/1
Y1 - 2012/1/1
N2 - [1] Total mercury (HgT) and monomethyl mercury (MMHg) concentrations in fog collected from 4 locations in and around Monterey Bay, California during June-August of 2011 were 10.7 ± 6.8 and 3.4 ± 3.8 ng L−1respectively. In contrast, mean HgT and MMHg concentrations in rain water from March-June, 2011 were 1.8 ± 0.9 and 0.1 ± 0.04 ng L−1 respectively. Using estimates of fog water deposition from 6 sites in the region using a standard fog water collector (SFC), depositions of HgT and MMHg via fog were found to range from 42–4600 and 14–1500 ng m−2 y−1, which accounted for 7–42% of HgT and 61–99% of MMHg in total atmospheric deposition (fog, rain, and dry deposition), estimated for the coastal area. These initial measurements suggest that fog precipitation may constitute an important but previously overlooked input of MMHg to coastal environments. Preliminary comparisons of these data with associated chemical, meteorological and oceanic data suggest that biotically formed MMHg from coastal upwelling may contribute to the MMHg in fog water.
AB - [1] Total mercury (HgT) and monomethyl mercury (MMHg) concentrations in fog collected from 4 locations in and around Monterey Bay, California during June-August of 2011 were 10.7 ± 6.8 and 3.4 ± 3.8 ng L−1respectively. In contrast, mean HgT and MMHg concentrations in rain water from March-June, 2011 were 1.8 ± 0.9 and 0.1 ± 0.04 ng L−1 respectively. Using estimates of fog water deposition from 6 sites in the region using a standard fog water collector (SFC), depositions of HgT and MMHg via fog were found to range from 42–4600 and 14–1500 ng m−2 y−1, which accounted for 7–42% of HgT and 61–99% of MMHg in total atmospheric deposition (fog, rain, and dry deposition), estimated for the coastal area. These initial measurements suggest that fog precipitation may constitute an important but previously overlooked input of MMHg to coastal environments. Preliminary comparisons of these data with associated chemical, meteorological and oceanic data suggest that biotically formed MMHg from coastal upwelling may contribute to the MMHg in fog water.
UR - https://digitalcommons.csumb.edu/sns_fac/35
M3 - Article
VL - 39
JO - Geophysical Research Letters
JF - Geophysical Research Letters
ER -